Bregman Distance and Strong Convergence of Proximal-Type Algorithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Proximal Continuity and Convergence

and Applied Analysis 3 that the function f : (X, α) → (Y, β) is strongly proximally continuous on A if ∀E ⊂ A, ∀S ⊂ X, EαS 󳨐⇒ f (E) βf (S) . (5) Finally, one says that f is strongly proximally continuous on B if f is strongly proximally continuous on A, for every A ∈ B. We shall use the notation C B (X, Y) to denote the family of the functions from X to Y which are strongly proximally continuou...

متن کامل

Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence under Bregman Distance Growth Conditions

We introduce a unified algorithmic framework, called proximal-like incremental aggregated gradient (PLIAG) method, for minimizing the sum of smooth convex component functions and a proper closed convex regularization function that is possibly non-smooth and extendedvalued, with an additional abstract feasible set whose geometry can be captured by using the domain of a Legendre function. The PLI...

متن کامل

Convergence of Proximal-Like Algorithms

We analyze proximal methods based on entropy-like distances for the minimization of convex functions subject to nonnegativity constraints. We prove global convergence results for the methods with approximate minimization steps and an ergodic convergence result for the case of finding a zero of a maximal monotone operator. We also consider linearly constrained convex problems and establish a qua...

متن کامل

Approximate iterations in Bregman-function-based proximal algorithms

This paper establishes convergence of generalized Bregman-function-based proximal point algorithms when the iterates are computed only approximately. The problem being solved is modeled as a general maximal monotone operator, and need not reduce to minimization of a function. The accuracy conditions on the iterates resemble those required for the classical "linear" proximal point algorithm, but...

متن کامل

On Uniform Convexity, Total Convexity and Convergence of the Proximal Point and Outer Bregman Projection Algorithms in Banach Spaces

In this paper we study and compare the notions of uniform convexity of functions at a point and on bounded sets with the notions of total convexity at a point and sequential consistency of functions, respectively. We establish connections between these concepts of strict convexity in infinite dimensional settings and use the connections in order to obtain improved convergence results concerning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/590519